
Copyright ©2004 Russell Smith

DDDDyyyynnnnaaaammmmiiiiccccssss    SSSSiiiimmmmuuuullllaaaattttiiiioooonnnn

A whirlwind tour.
(Current State, and New Frontiers)

Russell Smith
Dec 2004



Copyright ©2004 Russell Smith

What I’ll Talk About

1. Dynamics simulation.
– What is it?
– Existing applications.
– Technology (the whirlwind tour) .

2. Making simulation easier for the end user.
– Technical challenges.

3. New techniques and applications.
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Chapter 1

Dynamics Simulation
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What is Dynamics?

• Classical physics: Newton’s law[s].

• In this talk “dynamics” is mostly “articulated 
rigid body dynamics”.

• But also:
– Particle dynamics, cloth dynamics, wave dynamics, fluid 

dynamics, flexible body dynamics, fracture dynamics…
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Dynamics Simulation Libraries

• API primitives: rigid or flexible bodies, joints, contact 
with friction, collision detection, etc…

• Many techniques, many libraries, lots of research.
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Applications: Games

– Interactive 3D worlds – typically FPS games.
– Limited uses: stacks of boxes, rag-dolls, collapsing buildings.

But: need fast, stable and predictable simulation.
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Applications: 3D animation tools

– The big three (Maya, SoftImage, 3DS Max), many others.
– Simulate dead things, or in combination with motion capture.
– Many custom tools, e.g. Massive (“Lord of the Rings”).
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Applications: Industrial

– Robot prototyping / modeling / research (e.g. Honda ASIMO, 
NASA mars rover).

– Biomechanics.
– Vehicle operator training, prototyping.
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• My rigid body simulation library.
– Many others: Havok, PhysX (Novodex, Meqon), SD/Fast…

• A platform for research.
– Simulation algorithms, simulation applications.

• Open source (BSD license).
– Dynamics should be ubiquitous: encourage innovation.
– Closed source libraries constrain users: endless 

customization and integration hassles.
– Why customization: ODE � SoftImage XSI � ILM

• Used in “Eternal Sunshine of the Spotless Mind”.
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• Over 1000 users: widely used in games, game engines, robot 
simulation, 3D animation.
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Technology #1 – Equations of Motion

• Lagrange multiplier (LM).
– State space includes all body degrees of freedom. Model constraint 

forces explicitly. Invert a big matrix in each step.

• Reduced coordinate (RC).
– State space has minimum size. Constraint forces are implicit. 

Spatial algebra. Fast tree-based factorization.

• State of the art: hybrids.
– LM more flexible, RC faster – combine the two.

• Jakobsen – the easy way.
– Particle system, Verlet integrator. Fast but limited.

• Impulse dynamics – also a popular choice.
• Transformations of constraint manifold.
• Many more…
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Technology #2 – Integration

• Integrator type.
– Explicit: acceleration a function of current forces.

• Numerical energy gains.
– Implicit: acceleration a function of future forces.

• Numerical damping, therefore more stable.

• Accuracy and stability.
– Higher order = more stable (usually).
– Higher order = more accurate? (it depends…)

• Integrator or time-stepper
– Integrator: plug in  dy/dt=f(y)
– Time stepper: integrator mixed with model.

• State of the art: second order time steppers with 
pyramidal friction [Stewart and Trinkle].

• Symplectic integration – but what about non-
conservative systems?
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Technology #3 – Contact and Friction

• Old way: spring and damper.
– Spring and damper prevent penetration.
– Tangential damping gives viscous friction.

• New way: constraint based.
– Non-penetration constraints, solve LCP.

• Constraint based friction.
– Coulomb friction cones ideal – but solution may not exist!
– Static and dynamic friction.
– Approximating friction is the big problem: friction pyramids, friction 

boxes, time-steppers.

• Impact modeling
– Velocity constraints give impulses for free.

• Frontiers: differential inclusions, non-convex LCP.
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Technology #4 –LCP

• Lagrange multiplier technique: Solve the linear 
complementarity problem (LCP):

• If x=0 this is just factorization.

• Otherwise it’s a discrete optimization problem.
– Find the subset of variables in x to clamp to zero.
– If A is SPD, a single unique solution exists, otherwise existence 

and uniqueness is not guaranteed.
– Various search and factorization-based algorithms, both direct and 

iterative. Jury still out on the “best” technique for RBD.

• Frontiers: Interior point methods, multi-grid LCP, non-
convex LCP, nonlinear-CP.

0wx0,w0,xw,bxA =≥≥+= T
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Technology #5 – Optimization

• For Lagrange multiplier technique, must factorize the 
“system matrix” (also principle sub-matrices).

• Matrix may be singular (PSD) or close to it.
– Must use numerically robust algorithms.

• It’s not about MFLOPS, it’s about MBytes/s
– Naïve implementations starve floating point units, as main memory 

bandwidth is very small compared to peak MFLOPS.
– Many tricks: minimize memory traffic, cache-friendly algorithms, 

pipelining, SIMD, ATLAS.

• Frontiers:
– Multi-frontal solvers for sparse matrices.
– Reduced coordinate hybrid techniques.
– Iterative solvers.
– GPUs, custom hardware.
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Technology #6 – Collision

• Collision detection an entirely separate field.
– Computational geometry.
– Many problems to solve.

• Standard approaches:
– Primitive–to–primitive, O(N2) functions to write.
– GJK / VClip (convex polyhedra).
– Culling (AABBs, OBBs, BSPs, etc).
– Triangle mesh (RAPID).

• More than just intersection tests.
– Generate contact points, contact normals and depths.
– Contact culling for good physical behavior.
– Frontiers: Continuous collision detection to prevent interpenetration.
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Chapter 2

Making Simulation Easier to Use
(and therefore cheaper)



Copyright ©2004 Russell Smith

Why Simulation is Hard

• Modeling real-world mechanisms is hard.
• Unexpected behavior.

– Hard-to-debug numerical explosions, jitter, poor contact behavior 
and general unexpected weirdness.

• APIs force the user to learn arcane concepts.
– Many simulation primitives not intuitive – angular velocity, inertia 

tensors.

• Too slow for big models.
• Force-based modeling is tricky.
• Too many numerical parameters to tune.

– Many modeling / numerical approximations used, all with their own 
tradeoff parameters. Little guidance available, need to experiment.
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Case Study: Game Worlds

• Don’t have to script all behavior (easier content 
creation?)
– But: hard to script any behavior. Lack of artist control.

• Improved realism and world consistency.
– Objects “do the right thing” – but only if the model is good, and this 

might not be what you want anyway (e.g., vehicle centers of mass).

• Emergent behavior.
– Often pleasantly surprising, often annoying. Game design must 

allow for unpredictable outcomes.

• Players can exercise more creativity and control.
– World building, story telling.

• Other problems:
– Extra control / AI needed for virtual creatures.
– Allow a dynamic player to participate in a dynamic environment.
– More computation needed – eats the CPU budget.
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Case Study: Robot Control

• Simulations are quicker to build than robots.
– But realistic simulations are hard to build: need to model actuators 

(electrical motor dynamics, hydraulics / pneumatics, gear boxes,
friction, stiction, flexion and slip), sensors, robot geometry and 
mass distribution, joint geometries, flexible bodies (vibration 
effects).

• Simulations let you cheat.
– Easy to make controllers that exploit quirks of the simulated world, 

that don’t work so well in real life.

• Simulated robots don’t break.
– The cost of experimentation may be lower.

• The best tradeoff:
– Prototype robot control algorithms on a good-enough simulation, 

then move to the real hardware.
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API Issues

• In the old days it was harder:
– MDH parameters, weird reference frames, text file 

configuration, poor documentation, implementation exposed. 

• Now we think about the user experience.
– Absolute positions, utility functions (e.g. for rotation), 

interactive setup (3D tools), documentation, API consistency, 
only essential concepts in the API.

• Still lots of room for improvement.
– Constructive modeling: glue, split, clone, deform, etc.
– Dynamics debuggers – identify model physical / numerical 

errors.
– Standardized data formats.
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Speed

• Higher speed � real time simulation of more 
complex worlds.

• Big-matrix methods need lots of Optimization.
– Coding tricks: minimize memory traffic, cache-friendly algorithms, 

pipelining, SIMD.
• Parameterized code, search for efficient parameters (ATLAS).

• CPU budgeting.
– Iterative methods allow us to cap effort per frame.
– But accuracy is an issue.

• Parallelization.
– Problem is not coarse grained – so clusters don’t work well.
– Parallel direct factorization – only for large problems.
– Iterative techniques the easiest to parallelize.
– ODE QuickStep inner loop: 3x speedup using 6 CPUs – [SGI Altix].
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Force Based Modeling (bad!)

• User calculates and applies forces to bodies, 
e.g.:
– Contacts and friction: spring and damper contact points.
– Actuators and brakes: PD control of joint forces.

• Why it’s bad:
– Lots of parameters to tune (spend all your time searching a 

high-dimensional parameter space).
– Usually hard to achieve desired effects (e.g. non-penetration 

of contacts).
– Stiff forces react badly with explicit integrators.

• Implicit integrators are slow on user-supplied forces.
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Constraint Based Modeling (good!)

• Velocity / acceleration [in]equality constraints (LCP):

• Contacts and friction.
– Relative velocity & force normal to contact surface ≥ 0.
– Tangential forces limited by Coulomb friction (various models).
– Constraint modeling is now commonplace for contacts.

• Actuators and brakes.
– Joint velocity = v, but don’t apply too much force.

• Simulator enforces constraints automatically
– No parameters to tune.
– Integration problems hidden away.

• Can also model stiff springs, e.g. suspensions.

0)(,0)(or0)(,0)( ≥=≥= aavv bavu ffff
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Joints are Constraint

ODE’s “robot” joints:

ODE’s special purpose joints:
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Constraint Also Good For:

• Mechanisms
– Gears, linked platforms, steering geometry, suspensions, 

roller coasters, weird joints (e.g. screw joints), etc.

• Modeling
– Contact geometry, various kinds of friction, various 

actuators, spongy / flexible joints, etc.

• Disadvantages:
– More expensive than forces.

• Must factor a matrix of constraint information.
– More mathematically difficult to formulate.

• But “intuitive” guidance available, see
Game Gems IV ch3.4.
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Chapter 3

New Techniques
and Applications
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New Ways of Using Simulation

• Animation Tools.
– Artist control.
– Ghosting
– Motion retargeting.
– Motion scripting, time-extended constraints. 
– Realistic movement: alternatives to key-framing / MoCap.

• Robot Control.
– Simulation-in-the-loop
– Behavioral constraints, e.g. balancing.
– Motion retargeting.
– Model fitting (converge on robot model).
– Look-ahead, look-ahead constraints.

• Other categories:
– Haptics (e.g. virtual surgery), biomechanics research / diagnosis, 

industrial prototyping (vehicles, robots), product presentation,
operator training.
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Artist Control #1: Kinematic Control

• First order dynamics used for posing 
(click+drag positioning).
– First order: velocity (not acceleration) driven by force.
– Easier than inverse kinematics, all constraints in the toolbox 

can be applied.
– E.g.: Endorphin (www.naturalmotion.com)

Also: ghosting (Endorphin, XSI)
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Artist Control #2: Motion Control

• Motion retargeting.
– Source motion drives end effector constraints, or inverse 

collision constraints.
– Constraints added to target structure so that it follows the 

relevant features of the source motion.

• Motion scripting.
– Constrain the end-state of a simulation, or a functional of the 

trajectory. Get high level motion control.
– Point-and-shoot techniques. Dynamic programming?
– Hybrid systems - combine kinematics (MoCap) with 

dynamics.
– Need good designer interfaces - still experimental.
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Simulation-in-the-Loop
(to Augment Intelligent Control)

• A popular approach: modular, hierarchical design.
– “Biologically inspired”.
– Adaptive control used in lower levels.
– E.g.:

Robot

Trainer

Actuators Sensors

Supervisor level

Low level
control of joints

Medium level
control of “synergies”

Adaptive
Controller
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A Common Problem:
Compensation For Internal Disturbance.

• A high level command descending through the hierarchy may 
inadvertently affect other parts of the hierarchy, e.g.:

Robot

2) “Move left arm”

3) New joint trajectories

1) “Reach for cup”

4) Motors activated,
positions change

5) Influence felt elsewhere
in body, compensation
required
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Trainer

Adaptive
Controller

Standard Solutions

1. Add extra associativity to the low level controllers.

2. Use global inverse dynamics to determine joint forces.
• Lack of flexibility, e.g. fully specified motion for all joints – a problem if we 

want joint compliance.

Robot

With extra internal sensors this unit 
is able to anticipate and correct for 
disturbances.
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Simulation-in-the-Loop

• Simulation input: joint force / velocity reference.
• Joint forces read out.
• Constraints automatically compensate for disturbances.

Robot

Robot
Simulation
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Behavioral Constraints

• E.g. balancing: control center of mass projection onto 
floor:

• We can express this as a velocity constraint:

• The trick: compute the actuator forces that could 
substitute for the constraint forces..
– Least squares problem.
– Can not always find a solution, e.g. depends on initial conditions.
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Example: Balancing Constraint

• Simple biped model:
– Left foot anchored to ground.
– The only control rule: keep left leg straight.
– Right leg dragged by an external force.
– Balance constraint implies actuator commands � biped 

posture changes to keep balance.
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The End


