Dynamics Simulation

A whirlwind tour.
(Current State, and New Frontiers)

Russell Smith
Dec 2004

Copyright ©2004 Russell Smith

What I'll Talk About

1. Dynamics simulation.
— Whatis it?
— Existing applications.
— Technology (the whirlwind tour) .

2. Making simulation easier for the end user.
— Technical challenges.

3. New techniques and applications.

Copyright ©2004 Russell Smith

Chapter 1

Dynamics Simulation

Copyright ©2004 Russell Smith

What is Dynamics?

Classical physics: Newton’s law[s].

— —_— _ <4— Grad school

dt ° ap

2
High school —» f = ma M d p aV

 In this talk “dynamics” is mostly “articulated
rigid body dynamics”.

e But also:

— Particle dynamics, cloth dynamics, wave dynamics, fluid
dynamics, flexible body dynamics, fracture dynamics...

Copyright ©2004 Russell Smith

Dynamics Simulation Libraries

* API primitives: rigid or flexible bodies, joints, contact
with friction, collision detection, etc...

 Many techniques, many libraries, lots of research.

] k)
"
o ——
o AR o
Rigid bodes Jonts Comdact
(soid okiecks) (ke hinges) ealhaions
Frichon Crndcjd's

(Keeps o tower (like spfings
of cards S"eodjj P ‘])

Copyright ©2004 Russell Smith

Applications: Games

— Interactive 3D worlds — typically FPS games.

— Limited uses: stacks of boxes, rag-dolls, collapsing buildings.
But: need fast, stable and predictable simulation.

Copyright ©2004 Russell Smith

Applications: 3D animation tools

— The big three (Maya, Softimage, 3DS Max), many others.
— Simulate dead things, or in combination with motion capture.
— Many custom tools, e.g. Massive (“Lord of the Rings”).

I e T = =
LA L L AR A RS R A R L i Ll RN

Copyright ©2004 Russell Smith

Applications: Industrial

— Robot prototyping / modeling / research (e.g. Honda ASIMO,
NASA mars rover).

— Biomechanics.
— Vehicle operator training, prototyping.

Tad - S i T
] L N

Copyright ©2004 Russell Smith

OPEN DyYNAMICS ENGINE"

« My rigid body simulation library.
— Many others: Havok, PhysX (Novodex, Meqon), SD/Fast...

« A platform for research.
— Simulation algorithms, simulation applications.

e Open source (BSD license).
— Dynamics should be ubiquitous: encourage innovation.

— Closed source libraries constrain users: endless
customization and integration hassles.

— Why customization: ODE - Softimage XSI - ILM
« Used in “Eternal Sunshine of the Spotless Mind”.

Copyright ©2004 Russell Smith

OPEN DYNAMICS ENGINE™

e Over 1000 users: widely used in games, game engines, robot
simulation, 3D animation.

~] ezl IJ---

Copyright ©2004 Russell Smith

Technology #1 — Equations of Motion

Lagrange multiplier (LM).
— State space includes all body degrees of freedom. Model constraint
forces explicitly. Invert a big matrix in each step.

Reduced coordinate (RC).

— State space has minimum size. Constraint forces are implicit.
Spatial algebra. Fast tree-based factorization.

State of the art: hybrids.

— LM more flexible, RC faster — combine the two.

Jakobsen — the easy way.
— Particle system, Verlet integrator. Fast but limited.

Impulse dynamics — also a popular choice.
Transformations of constraint manifold.
Many more...

Copyright ©2004 Russell Smith

Technology #2 — Integration

Integrator type.

— EXxplicit: acceleration a function of current forces.
* Numerical energy gains.

— Implicit: acceleration a function of future forces.
* Numerical damping, therefore more stable.

Accuracy and stability.
— Higher order = more stable (usually).
— Higher order = more accurate? (it depends...)

Integrator or time-stepper
— Integrator: plug in dy/dt=f(y)
— Time stepper: integrator mixed with model.

State of the art: second order time steppers with
pyramidal friction [Stewart and Trinkle].

Symplectic integration — but what about non-
conservative systems?

Copyright ©2004 Russell Smith

Technology #3 — Contact and Friction

Old way: spring and damper. -
— Spring and damper prevent penetration. /H .
— Tangential damping gives viscous friction.

Contact polnt

New way: constraint based. \ F-air2
— Non-penetration constraints, solve LCP.
Body 2

Constraint based friction.

— Coulomb friction cones ideal — but solution may not exist!
— Static and dynamic friction.

— Approximating friction is the big problem: friction pyramids, friction
boxes, time-steppers.

Impact modeling
— Velocity constraints give impulses for free.

Frontiers: differential inclusions, non-convex LCP.

Copyright ©2004 Russell Smith

Technology #4 —LCP

Lagrange multiplier technique: Solve the linear
complementarity problem (LCP):

Ax=b+w, x=0, w=0, x'w=0
If x=0 this is just factorization.

Otherwise it’s a discrete optimization problem.
— Find the subset of variables in x to clamp to zero.

— If A'is SPD, a single unique solution exists, otherwise existence
and unigueness is not guaranteed.

— Various search and factorization-based algorithms, both direct and
iterative. Jury still out on the “best” technique for RBD.

Frontiers: Interior point methods, multi-grid LCP, non-
convex LCP, nonlinear-CP.

Copyright ©2004 Russell Smith

Technology #5 — Optimization

For Lagrange multiplier technique, must factorize the
“system matrix” (also principle sub-matrices).

Matrix may be singular (PSD) or close to it.
— Must use numerically robust algorithms.

It's not about MFLOPS, it's about MBytes/s

— Naive implementations starve floating point units, as main memory
bandwidth is very small compared to peak MFLOPS.

— Many tricks: minimize memory traffic, cache-friendly algorithms,
pipelining, SIMD, ATLAS.

Frontiers:

— Multi-frontal solvers for sparse matrices.
— Reduced coordinate hybrid techniques.
— Iterative solvers.

— GPUs, custom hardware.

Copyright ©2004 Russell Smith

Technology #6 — Collision

Collision detection an entirely separate field.

— Computational geometry.
— Many problems to solve.

Standard approaches:
— Primitive—to—primitive, O(N2) functions to write.
— GJK / VClip (convex polyhedra).
— Culling (AABBs, OBBs, BSPs, etc).
— Triangle mesh (RAPID).

More than just intersection tests.
— Generate contact points, contact normals and depths.

— Contact culling for good physical behavior.
— Frontiers: Continuous collision detection to prevent interpenetration.

Copyright ©2004 Russell Smith

Chapter 2

Making Simulation Easier to Use

(and therefore cheaper)

Copyright ©2004 Russell Smith

Why Simulation is Hard

Modeling real-world mechanisms is hard.

Unexpected behavior.

— Hard-to-debug numerical explosions, jitter, poor contact behavior
and general unexpected weirdness.

APIls force the user to learn arcane concepts.

— Many simulation primitives not intuitive — angular velocity, inertia
tensors.

Too slow for big models.
Force-based modeling is tricky.

Too many numerical parameters to tune.

— Many modeling / numerical approximations used, all with their own
tradeoff parameters. Little guidance available, need to experiment.

Copyright ©2004 Russell Smith

Case Study: Game Worlds

Don’t have to script all behavior (easier content
creation?)
— But: hard to script any behavior. Lack of artist control.

Improved realism and world consistency.

— Objects “do the right thing” — but only if the model is good, and this
might not be what you want anyway (e.g., vehicle centers of mass).

Emergent behavior.

— Often pleasantly surprising, often annoying. Game design must
allow for unpredictable outcomes.

Players can exercise more creativity and control.
— World building, story telling.

Other problems:
— Extra control / Al needed for virtual creatures.
— Allow a dynamic player to participate in a dynamic environment.
— More computation needed — eats the CPU budget.

Copyright ©2004 Russell Smith

Case Study: Robot Control

Simulations are quicker to build than robots.

— But realistic simulations are hard to build: need to model actuators
(electrical motor dynamics, hydraulics / pneumatics, gear boxes,
friction, stiction, flexion and slip), sensors, robot geometry and
mass distribution, joint geometries, flexible bodies (vibration
effects).

Simulations let you cheat.

— Easy to make controllers that exploit quirks of the simulated world,
that don’t work so well in real life.

Simulated robots don’t break.
— The cost of experimentation may be lower.

The best tradeoff:

— Prototype robot control algorithms on a good-enough simulation,
then move to the real hardware.

Copyright ©2004 Russell Smith

APl Issues

* |n the old days it was harder:

— MDH parameters, weird reference frames, text file
configuration, poor documentation, implementation exposed.

 Now we think about the user experience.

— Absolute positions, utility functions (e.g. for rotation),
interactive setup (3D tools), documentation, APl consistency,
only essential concepts in the API.

 Still lots of room for improvement.

— Constructive modeling: glue, split, clone, deform, etc.

— Dynamics debuggers — identify model physical / numerical
errors.

— Standardized data formats.

Copyright ©2004 Russell Smith

Speed

Higher speed - real time simulation of more
complex worlds.

Big-matrix methods need lots of Optimization.

— Coding tricks: minimize memory traffic, cache-friendly algorithms,
pipelining, SIMD.
» Parameterized code, search for efficient parameters (ATLAS).

CPU budgeting.

— Iterative methods allow us to cap effort per frame.
— But accuracy is an issue.

Parallelization.
— Problem is not coarse grained — so clusters don’t work well.
— Parallel direct factorization — only for large problems.
— lterative techniques the easiest to parallelize.
— ODE QuickStep inner loop: 3x speedup using 6 CPUs — [SGI Altix].

Copyright ©2004 Russell Smith

Force Based Modeling (bad!)

o User calculates and applies forces to bodies,
e.g..
— Contacts and friction: spring and damper contact points.
— Actuators and brakes: PD control of joint forces.

 Why it’s bad:
— Lots of parameters to tune (spend all your time searching a
high-dimensional parameter space).

— Usually hard to achieve desired effects (e.g. non-penetration
of contacts).

— Stiff forces react badly with explicit integrators.
 Implicit integrators are slow on user-supplied forces.

Copyright ©2004 Russell Smith

Constraint Based Modeling (good!)

Velocity / acceleration [inJequality constraints (LCP):
f.(v)=0,f(v)=0 or f,(a)=0, f (a)=0

Contacts and friction.

— Relative velocity & force normal to contact surface = 0.
— Tangential forces limited by Coulomb friction (various models).
— Constraint modeling is now commonplace for contacts.

Actuators and brakes.
— Joint velocity = v, but don’t apply too much force.

Simulator enforces constraints automatically
— No parameters to tune.
— Integration problems hidden away.

Can also model stiff springs, e.g. suspensions.

Copyright ©2004 Russell Smith

Joints are Constraint

ODE'’s “robot” joints:

ODE'’s special purpose joints:

Axis 2

Bady 1

Copyright ©2004 Russell Smith

Constraint Also Good For:

e Mechanisms

— Gears, linked platforms, steering geometry, suspensions,
roller coasters, weird joints (e.g. screw joints), etc.

 Modeling

— Contact geometry, various kinds of friction, various
actuators, spongy / flexible joints, etc.

* Disadvantages:

— More expensive than forces.
e Must factor a matrix of constraint information.
— More mathematically difficult to formulate.

* But “intuitive” guidance available, see
Game Gems IV ch3.4.

GAME
PROGRAN

"i. |
(=4

Copyright ©2004 Russell Smith

Chapter 3

New Technigues
and Applications

Copyright ©2004 Russell Smith

New Ways of Using Simulation

Animation Tools.
— Artist control.
— Ghosting
— Motion retargeting.
— Motion scripting, time-extended constraints.
— Realistic movement: alternatives to key-framing / MoCap.

Robot Control.

— Simulation-in-the-loop

— Behavioral constraints, e.g. balancing.
— Motion retargeting.

— Model fitting (converge on robot model).
— Look-ahead, look-ahead constraints.

Other categories:

— Haptics (e.qg. virtual surgery), biomechanics research / diagnosis,
industrial prototyping (vehicles, robots), product presentation,
operator training.

Copyright ©2004 Russell Smith

Artist Control #1: Kinematic Control

* First order dynamics used for posing
(click+drag positioning).
— First order: velocity (not acceleration) driven by force.

— Easier than inverse kinematics, all constraints in the toolbox
can be applied.

— E.g.: Endorphin (www.naturalmotion.com)

Also: ghosting (Endorphin, XSI)

Copyright ©2004 Russell Smith

Artist Control #2: Motion Control

Motion retargeting.

— Source motion drives end effector constraints, or inverse
collision constraints.

— Constraints added to target structure so that it follows the
relevant features of the source motion.

Motion scripting.

— Constrain the end-state of a simulation, or a functional of the
trajectory. Get high level motion control.

— Point-and-shoot techniques. Dynamic programming?

— Hybrid systems - combine kinematics (MoCap) with
dynamics.

— Need good designer interfaces - still experimental.

Copyright ©2004 Russell Smith

Simulation-in-the-Loop

(to Augment Intelligent Control)

* A popular approach: modular, hierarchical design.
— “Biologically inspired”.

— Adaptive control used in lower levels.

- E.gQ.:

Supervisor level

Medium level
control of “synergies”

Low level
control of joints

A

Actuators Sensors
v

Robot

Trainer

Adaptive
Controller

Copyright ©2004 Russell Smith

A Common Problem:
Compensation For Internal Disturbance.

* A high level command descending through the hierarchy may
Inadvertently affect other parts of the hierarchy, e.g.:

1) “Reach for cup”\\

2) “Move leftarm”

3) New joint trajectories / *

XA

A
4) Motors activated 5) Influence felt elsewhere
positions change in body, compensation

required
Robot

Copyright ©2004 Russell Smith

Standard Solutions

1. Add extra associativity to the low level controllers.

2. Use global inverse dynamics to determine joint forces.
 Lack of flexibility, e.g. fully specified motion for all joints — a problem if we

want joint compliance.

— | .
Trainer
/I
N
¥ N : ., Adaptive
| R— Controller
. ,

Robot

N

With extra internal sensors this unit
is able to anticipate and correct for
disturbances.

Copyright ©2004 Russell Smith

Simulation-in-the-Loop

e Simulation input: joint force / velocity reference.
e Joint forces read out.
 Constraints automatically compensate for disturbances.

\

> Robot
T Simulation

Robot |«

Copyright ©2004 Russell Smith

Behavioral Constraints

« E.g. balancing: control center of mass projection onto

floor:
> mnTp,

iizrni

 We can express this as a velocity constraint:

= whatever (nisfloor normal)

d
momentum=n">» m,v, = [Z mij aWhatever

« The trick: compute the actuator forces that could
substitute for the constraint forces..

— Least squares problem.
— Can not always find a solution, e.g. depends on initial conditions.

Copyright ©2004 Russell Smith

Example: Balancing Constraint

e Simple biped model:

— Left foot anchored to ground.
— The only control rule: keep left leg straight.
— Right leg dragged by an external force.

— Balance constraint implies actuator commands - biped
posture changes to keep balance.

Copyright ©2004 Russell Smith

Copyright ©2004 Russell Smith

