
Copyright ©2004 Russell Smith

DDDDyyyynnnnaaaammmmiiiiccccssss SSSSiiiimmmmuuuullllaaaattttiiiioooonnnn

A whirlwind tour.
(Current State, and New Frontiers)

Russell Smith
Dec 2004

Copyright ©2004 Russell Smith

What I’ll Talk About

1. Dynamics simulation.
– What is it?
– Existing applications.
– Technology (the whirlwind tour) .

2. Making simulation easier for the end user.
– Technical challenges.

3. New techniques and applications.

Copyright ©2004 Russell Smith

Chapter 1

Dynamics Simulation

Copyright ©2004 Russell Smith

What is Dynamics?

• Classical physics: Newton’s law[s].

• In this talk “dynamics” is mostly “articulated
rigid body dynamics”.

• But also:
– Particle dynamics, cloth dynamics, wave dynamics, fluid

dynamics, flexible body dynamics, fracture dynamics…

T

2

2

dt
d

p
pM

∂
∂−== VmafHigh school Grad school

Copyright ©2004 Russell Smith

Dynamics Simulation Libraries

• API primitives: rigid or flexible bodies, joints, contact
with friction, collision detection, etc…

• Many techniques, many libraries, lots of research.

Copyright ©2004 Russell Smith

Applications: Games

– Interactive 3D worlds – typically FPS games.
– Limited uses: stacks of boxes, rag-dolls, collapsing buildings.

But: need fast, stable and predictable simulation.

Copyright ©2004 Russell Smith

Applications: 3D animation tools

– The big three (Maya, SoftImage, 3DS Max), many others.
– Simulate dead things, or in combination with motion capture.
– Many custom tools, e.g. Massive (“Lord of the Rings”).

Copyright ©2004 Russell Smith

Applications: Industrial

– Robot prototyping / modeling / research (e.g. Honda ASIMO,
NASA mars rover).

– Biomechanics.
– Vehicle operator training, prototyping.

Copyright ©2004 Russell Smith

• My rigid body simulation library.
– Many others: Havok, PhysX (Novodex, Meqon), SD/Fast…

• A platform for research.
– Simulation algorithms, simulation applications.

• Open source (BSD license).
– Dynamics should be ubiquitous: encourage innovation.
– Closed source libraries constrain users: endless

customization and integration hassles.
– Why customization: ODE � SoftImage XSI � ILM

• Used in “Eternal Sunshine of the Spotless Mind”.

Copyright ©2004 Russell Smith

• Over 1000 users: widely used in games, game engines, robot
simulation, 3D animation.

Copyright ©2004 Russell Smith

Technology #1 – Equations of Motion

• Lagrange multiplier (LM).
– State space includes all body degrees of freedom. Model constraint

forces explicitly. Invert a big matrix in each step.

• Reduced coordinate (RC).
– State space has minimum size. Constraint forces are implicit.

Spatial algebra. Fast tree-based factorization.

• State of the art: hybrids.
– LM more flexible, RC faster – combine the two.

• Jakobsen – the easy way.
– Particle system, Verlet integrator. Fast but limited.

• Impulse dynamics – also a popular choice.
• Transformations of constraint manifold.
• Many more…

Copyright ©2004 Russell Smith

Technology #2 – Integration

• Integrator type.
– Explicit: acceleration a function of current forces.

• Numerical energy gains.
– Implicit: acceleration a function of future forces.

• Numerical damping, therefore more stable.

• Accuracy and stability.
– Higher order = more stable (usually).
– Higher order = more accurate? (it depends…)

• Integrator or time-stepper
– Integrator: plug in dy/dt=f(y)
– Time stepper: integrator mixed with model.

• State of the art: second order time steppers with
pyramidal friction [Stewart and Trinkle].

• Symplectic integration – but what about non-
conservative systems?

Copyright ©2004 Russell Smith

Technology #3 – Contact and Friction

• Old way: spring and damper.
– Spring and damper prevent penetration.
– Tangential damping gives viscous friction.

• New way: constraint based.
– Non-penetration constraints, solve LCP.

• Constraint based friction.
– Coulomb friction cones ideal – but solution may not exist!
– Static and dynamic friction.
– Approximating friction is the big problem: friction pyramids, friction

boxes, time-steppers.

• Impact modeling
– Velocity constraints give impulses for free.

• Frontiers: differential inclusions, non-convex LCP.

Copyright ©2004 Russell Smith

Technology #4 –LCP

• Lagrange multiplier technique: Solve the linear
complementarity problem (LCP):

• If x=0 this is just factorization.

• Otherwise it’s a discrete optimization problem.
– Find the subset of variables in x to clamp to zero.
– If A is SPD, a single unique solution exists, otherwise existence

and uniqueness is not guaranteed.
– Various search and factorization-based algorithms, both direct and

iterative. Jury still out on the “best” technique for RBD.

• Frontiers: Interior point methods, multi-grid LCP, non-
convex LCP, nonlinear-CP.

0wx0,w0,xw,bxA =≥≥+= T

Copyright ©2004 Russell Smith

Technology #5 – Optimization

• For Lagrange multiplier technique, must factorize the
“system matrix” (also principle sub-matrices).

• Matrix may be singular (PSD) or close to it.
– Must use numerically robust algorithms.

• It’s not about MFLOPS, it’s about MBytes/s
– Naïve implementations starve floating point units, as main memory

bandwidth is very small compared to peak MFLOPS.
– Many tricks: minimize memory traffic, cache-friendly algorithms,

pipelining, SIMD, ATLAS.

• Frontiers:
– Multi-frontal solvers for sparse matrices.
– Reduced coordinate hybrid techniques.
– Iterative solvers.
– GPUs, custom hardware.

Copyright ©2004 Russell Smith

Technology #6 – Collision

• Collision detection an entirely separate field.
– Computational geometry.
– Many problems to solve.

• Standard approaches:
– Primitive–to–primitive, O(N2) functions to write.
– GJK / VClip (convex polyhedra).
– Culling (AABBs, OBBs, BSPs, etc).
– Triangle mesh (RAPID).

• More than just intersection tests.
– Generate contact points, contact normals and depths.
– Contact culling for good physical behavior.
– Frontiers: Continuous collision detection to prevent interpenetration.

Copyright ©2004 Russell Smith

Chapter 2

Making Simulation Easier to Use
(and therefore cheaper)

Copyright ©2004 Russell Smith

Why Simulation is Hard

• Modeling real-world mechanisms is hard.
• Unexpected behavior.

– Hard-to-debug numerical explosions, jitter, poor contact behavior
and general unexpected weirdness.

• APIs force the user to learn arcane concepts.
– Many simulation primitives not intuitive – angular velocity, inertia

tensors.

• Too slow for big models.
• Force-based modeling is tricky.
• Too many numerical parameters to tune.

– Many modeling / numerical approximations used, all with their own
tradeoff parameters. Little guidance available, need to experiment.

Copyright ©2004 Russell Smith

Case Study: Game Worlds

• Don’t have to script all behavior (easier content
creation?)
– But: hard to script any behavior. Lack of artist control.

• Improved realism and world consistency.
– Objects “do the right thing” – but only if the model is good, and this

might not be what you want anyway (e.g., vehicle centers of mass).

• Emergent behavior.
– Often pleasantly surprising, often annoying. Game design must

allow for unpredictable outcomes.

• Players can exercise more creativity and control.
– World building, story telling.

• Other problems:
– Extra control / AI needed for virtual creatures.
– Allow a dynamic player to participate in a dynamic environment.
– More computation needed – eats the CPU budget.

Copyright ©2004 Russell Smith

Case Study: Robot Control

• Simulations are quicker to build than robots.
– But realistic simulations are hard to build: need to model actuators

(electrical motor dynamics, hydraulics / pneumatics, gear boxes,
friction, stiction, flexion and slip), sensors, robot geometry and
mass distribution, joint geometries, flexible bodies (vibration
effects).

• Simulations let you cheat.
– Easy to make controllers that exploit quirks of the simulated world,

that don’t work so well in real life.

• Simulated robots don’t break.
– The cost of experimentation may be lower.

• The best tradeoff:
– Prototype robot control algorithms on a good-enough simulation,

then move to the real hardware.

Copyright ©2004 Russell Smith

API Issues

• In the old days it was harder:
– MDH parameters, weird reference frames, text file

configuration, poor documentation, implementation exposed.

• Now we think about the user experience.
– Absolute positions, utility functions (e.g. for rotation),

interactive setup (3D tools), documentation, API consistency,
only essential concepts in the API.

• Still lots of room for improvement.
– Constructive modeling: glue, split, clone, deform, etc.
– Dynamics debuggers – identify model physical / numerical

errors.
– Standardized data formats.

Copyright ©2004 Russell Smith

Speed

• Higher speed � real time simulation of more
complex worlds.

• Big-matrix methods need lots of Optimization.
– Coding tricks: minimize memory traffic, cache-friendly algorithms,

pipelining, SIMD.
• Parameterized code, search for efficient parameters (ATLAS).

• CPU budgeting.
– Iterative methods allow us to cap effort per frame.
– But accuracy is an issue.

• Parallelization.
– Problem is not coarse grained – so clusters don’t work well.
– Parallel direct factorization – only for large problems.
– Iterative techniques the easiest to parallelize.
– ODE QuickStep inner loop: 3x speedup using 6 CPUs – [SGI Altix].

Copyright ©2004 Russell Smith

Force Based Modeling (bad!)

• User calculates and applies forces to bodies,
e.g.:
– Contacts and friction: spring and damper contact points.
– Actuators and brakes: PD control of joint forces.

• Why it’s bad:
– Lots of parameters to tune (spend all your time searching a

high-dimensional parameter space).
– Usually hard to achieve desired effects (e.g. non-penetration

of contacts).
– Stiff forces react badly with explicit integrators.

• Implicit integrators are slow on user-supplied forces.

Copyright ©2004 Russell Smith

Constraint Based Modeling (good!)

• Velocity / acceleration [in]equality constraints (LCP):

• Contacts and friction.
– Relative velocity & force normal to contact surface ≥ 0.
– Tangential forces limited by Coulomb friction (various models).
– Constraint modeling is now commonplace for contacts.

• Actuators and brakes.
– Joint velocity = v, but don’t apply too much force.

• Simulator enforces constraints automatically
– No parameters to tune.
– Integration problems hidden away.

• Can also model stiff springs, e.g. suspensions.

0)(,0)(or0)(,0)(≥=≥= aavv bavu ffff

Copyright ©2004 Russell Smith

Joints are Constraint

ODE’s “robot” joints:

ODE’s special purpose joints:

Copyright ©2004 Russell Smith

Constraint Also Good For:

• Mechanisms
– Gears, linked platforms, steering geometry, suspensions,

roller coasters, weird joints (e.g. screw joints), etc.

• Modeling
– Contact geometry, various kinds of friction, various

actuators, spongy / flexible joints, etc.

• Disadvantages:
– More expensive than forces.

• Must factor a matrix of constraint information.
– More mathematically difficult to formulate.

• But “intuitive” guidance available, see
Game Gems IV ch3.4.

Copyright ©2004 Russell Smith

Chapter 3

New Techniques
and Applications

Copyright ©2004 Russell Smith

New Ways of Using Simulation

• Animation Tools.
– Artist control.
– Ghosting
– Motion retargeting.
– Motion scripting, time-extended constraints.
– Realistic movement: alternatives to key-framing / MoCap.

• Robot Control.
– Simulation-in-the-loop
– Behavioral constraints, e.g. balancing.
– Motion retargeting.
– Model fitting (converge on robot model).
– Look-ahead, look-ahead constraints.

• Other categories:
– Haptics (e.g. virtual surgery), biomechanics research / diagnosis,

industrial prototyping (vehicles, robots), product presentation,
operator training.

Copyright ©2004 Russell Smith

Artist Control #1: Kinematic Control

• First order dynamics used for posing
(click+drag positioning).
– First order: velocity (not acceleration) driven by force.
– Easier than inverse kinematics, all constraints in the toolbox

can be applied.
– E.g.: Endorphin (www.naturalmotion.com)

Also: ghosting (Endorphin, XSI)

Copyright ©2004 Russell Smith

Artist Control #2: Motion Control

• Motion retargeting.
– Source motion drives end effector constraints, or inverse

collision constraints.
– Constraints added to target structure so that it follows the

relevant features of the source motion.

• Motion scripting.
– Constrain the end-state of a simulation, or a functional of the

trajectory. Get high level motion control.
– Point-and-shoot techniques. Dynamic programming?
– Hybrid systems - combine kinematics (MoCap) with

dynamics.
– Need good designer interfaces - still experimental.

Copyright ©2004 Russell Smith

Simulation-in-the-Loop
(to Augment Intelligent Control)

• A popular approach: modular, hierarchical design.
– “Biologically inspired”.
– Adaptive control used in lower levels.
– E.g.:

Robot

Trainer

Actuators Sensors

Supervisor level

Low level
control of joints

Medium level
control of “synergies”

Adaptive
Controller

Copyright ©2004 Russell Smith

A Common Problem:
Compensation For Internal Disturbance.

• A high level command descending through the hierarchy may
inadvertently affect other parts of the hierarchy, e.g.:

Robot

2) “Move left arm”

3) New joint trajectories

1) “Reach for cup”

4) Motors activated,
positions change

5) Influence felt elsewhere
in body, compensation
required

Copyright ©2004 Russell Smith

Trainer

Adaptive
Controller

Standard Solutions

1. Add extra associativity to the low level controllers.

2. Use global inverse dynamics to determine joint forces.
• Lack of flexibility, e.g. fully specified motion for all joints – a problem if we

want joint compliance.

Robot

With extra internal sensors this unit
is able to anticipate and correct for
disturbances.

Copyright ©2004 Russell Smith

Simulation-in-the-Loop

• Simulation input: joint force / velocity reference.
• Joint forces read out.
• Constraints automatically compensate for disturbances.

Robot

Robot
Simulation

Copyright ©2004 Russell Smith

Behavioral Constraints

• E.g. balancing: control center of mass projection onto
floor:

• We can express this as a velocity constraint:

• The trick: compute the actuator forces that could
substitute for the constraint forces..
– Least squares problem.
– Can not always find a solution, e.g. depends on initial conditions.

normal)floor is (whatever

T

n
n

=
∑

∑

i
i

i
ii

m

pm

whatever
dt
dmomentum T

== ∑∑
i

i
i

ii mvmn

Copyright ©2004 Russell Smith

Example: Balancing Constraint

• Simple biped model:
– Left foot anchored to ground.
– The only control rule: keep left leg straight.
– Right leg dragged by an external force.
– Balance constraint implies actuator commands � biped

posture changes to keep balance.

Copyright ©2004 Russell Smith

The End

