
How to make new joints in ODE

Copyright c©2002 Russell Smith

February 24, 2002

Contents

1 Introduction 2
1.1 What is a joint? . 2

2 Mathematical preliminaries 2
2.1 Notation . 2
2.2 Cross product algebra . 3

3 The body state variables 3
3.1 Position . 3
3.2 Orientation . 3
3.3 Linear velocity . 4
3.4 Angular velocity . 4
3.5 Note . 5

4 The constraint equation 5

5 Example 1: A ball joint 5
5.1 Step 1: Position invariant . 5
5.2 Step 2: Velocity invariant . 6
5.3 Step 3: Choosè, h and CFM . 6
5.4 Step 4: Error reduction . 7

6 Example 2: A contact joint 8
6.1 Step 1: Position invariant . 8
6.2 Step 2: Velocity invariant . 9
6.3 Step 3: Choosè, h and CFM . 9
6.4 Step 4: Error reduction . 10

7 How to use ERP and CFM 10

1

Figure 1: Three different constraint types: A ball joint, a hinge and a slider.

1 Introduction

The Open Dynamics Engine (ODE) is a free, industrial quality library for simulating articulated
rigid body dynamics. For example, it is good for simulating ground vehicles, legged creatures, and
moving objects in VR environments. It is fast, flexible and robust, and it has built-in collision detec-
tion. ODE is being developed by Russell Smith, and the web site ishttp://www.q12.org/ode/ .

This is a short implementors guide for creating new joint constraints in ODE.

1.1 What is a joint?

In real life a joint is something like a hinge, that is used to connect two objects. In ODE a joint
is very similar: It is a relationship that is enforced between two bodies so that they can only have
certain positions and orientations relative to each other. This relationship is called a constraint
— the words joint and constraint are often used interchangeably. Figure 1 shows three different
constraint types.

Each time the integrator takes a step all the joints apply constraint forces to the bodies they
affect. These forces are automatically calculated so that the body motions will preserve all the
joint relationships.

Each joint has a number of parameters controlling its geometry. An example is the position of
the ball in a ball-and-socket joint.

2 Mathematical preliminaries

The following notation will be used when deriving the example joint. It is assumed that the reader
has at least a basic understanding of matrix algebra.

2.1 Notation

• A 3 × 1 vectora′ is deemed to be relative to the frame of reference of some body. The
corresponding vectora is in the global (or absolute) frame of reference.a is a rotated version
of a′, i.e.

a = R a′ (1)

whereR is a3× 3 orthonormal (“rotation”) matrix.

2

• Then× n identity matrix is called1n.

• Then× 1 vector with each element set to infinity is∞n.

2.2 Cross product algebra

If a andb are3× 1 vectors then we define

a× b 4
= â b (2)

where

â =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 (3)

(a1, a2, a3 are the elements ofa). Some identities are:

â = −âT (4)

âa = 0 (5)

âb = −b̂a (6)

âb̂ = (b̂â)T (7)

âb̂b̂a = −b̂ââb (8)

Âb = Ab̂AT if ATA = 13 (9)

thus Ab× Ac = A(b× c) if ATA = 13 (10)

3 The body state variables

Joints in ODE connect rigid bodies together. Each body has a number of state variables: position,
orientation, linear and angular velocity. Body parameters that usually remain fixed during the
simulation, such as mass properties and geometrical shape, are not regarded as state variables.

3.1 Position

A body’s3× 1 position vector contains the position of the body’s center of mass:

p =

 px
py
pz

 (11)

3.2 Orientation

A body’s orientation is represented in ODE as either a3 × 3 rotation matrixR, or as a4 × 1
quaternion vectorq. R has the property that for a pointa′ relative to the body (i.e. in the body
frame) the corresponding global positiona is:

a = R a′ + p (12)

3

Note thatR is an orthonormal matrix, so that

R−1 = RT (13)

Let us look at howR transforms the global x axis vector (calledux):

R ux =

 r11 r12 r13

r21 r22 r23

r31 r32 r33


 1

0
0

 =

 r11

r21

r31

 (14)

We can see that the first column ofR is the transformed x axis (the second and third columns are
the transformed y and z axes). These transformed axes are calledu1, u2, andu3, so that

R =

 | | |
u1 u2 u3

| | |

 (15)

Theui vectors can be considered to be the body’s own local x,y and z axes, that are fixed to the
body and move relative to it (but that are expressed in global coordinates).

3.3 Linear velocity

A body’s3× 1 linear velocity vector is

v =

 vx
vy
vz

 =

 dpx/dt
dpy/dt
dpz/dt

 (16)

This is the time derivative of the position vector.

3.4 Angular velocity

A body’s3× 1 angular velocity vector is

ω =

 ωx
ωy
ωz

 (17)

If a is a global-frame vector giving the offset of a body point relative to the center of mass, then
the velocity of that point (in the global frame, relative to the center of mass) is:

da/dt = ȧ = ω × a (18)

If a′ is a body-relative vector giving the offset of a point in the body, then the global velocity of
that point is

da/dt = ȧ = ω × (R a′) + v (19)

4

The derivative ofR is often useful in deriving constraint equations:

Ṙ =
[
u̇1 u̇2 u̇3

]
(20)

=
[
ω × u1 ω × u2 ω × u3

]
(21)

=
[
ω̂u1 ω̂u2 ω̂u3

]
(22)

= ω̂R (23)

3.5 Note

State vectors in ODE are expressed in global (not body-local) coordinates.

4 The constraint equation

Every joint has three associated equations that looks like this:

J1v1 + Ω1ω1 + J2v2 + Ω2ω2 = c+ Cλ (24)

λ ≥ ` (25)

λ ≤ h (26)

The quantities on the left and right hand sides are vectors of sizem× 1 (we say this constraint has
m rows). J andΩ arem × 3 Jacobian matrices. The linear and angular velocity vectors for the
first body arev1 andω1. Similarly v2 andω2 correspond to the second body.c is anm × 1 “right
hand side vector”.

λ is anm×1 constraint force that is applied to the bodies to ensure that the constraint equation
(equation 24) is satisfied.λ is automatically calculated by ODE. Equation 25 and equation 26
indicate that the elements ofλ can be restricted to be within a lower (`) and upper (h) bound.

C is a diagonalm × m matrix called the “constraint force mixing” (CFM) matrix. It allows
the constraint forceλ to be part of the constraint equation.C can be manipulated to get certain
interesting effects, described below. For many “normal” constraints,C is set to 0.

5 Example 1: A ball joint

Let us derive the constraint equation for the ball joint shown in Figure 2.

5.1 Step 1: Position invariant

First, a kinematic constraint equation is written in terms of the position and orientation of the two
bodies. This is the equation that must always be true while the joint is connecting the two bodies.

For the ball joint, if we definea′1 (anda′2) to be the “attachment” vectors fromp1 (andp2) to
the center of the ball, relative to bodies 1 (and 2), then the constraint is:

p1 +R1a
′
1 = p2 +R2a

′
2 (27)

because the ball of body 2 must remain in the socket of body 1.

5

Figure 2: A ball joint.

5.2 Step 2: Velocity invariant

Take the time derivative of equation 27, so that the constraint is expressed in terms of the body
velocities:

d

dt

[
p1 +R1a

′
1

]
=

d

dt

[
p2 +R2a

′
2

]
(28)

v1 + Ṙ1a
′
1 = v2 + Ṙ2a

′
2 (29)

v1 + ω̂1R1a
′
1 = v2 + ω̂2R2a

′
2 (30)

v1 + ω̂1a1 = v2 + ω̂2a2 (31)

v1 − â1ω1 − v2 + â2ω2 = 0 (32)

Thus

J1 = 13 (33)

Ω1 = −â1 (34)

J2 = −13 (35)

Ω2 = â2 (36)

c = 0 (37)

5.3 Step 3: Choosè, h and CFM

There will be no limits onλ, and no CFM so we also have

` = −∞3 (38)

h = ∞3 (39)

C = 0 (40)

6

Figure 3: The meaning of the constraint equation for a ball joint.

5.4 Step 4: Error reduction

It seems that we have found all the values required for this constraint. However, if you actually
implement the ball joint this way you will discover a problem. As the simulation proceeds the joint
will gradually “come apart”, i.e. the position of the ball and socket with respect to the first and
second bodies will gradually diverge. This is referred to as joint error.

But shouldn’t equation 27 explicitly prevent this from happening? No: the enforced constraint
is expressed in velocities, not positions. This would not matter if we were able to simulate with
perfect accuracy, but in fact all simulators have various numerical errors. The result is that the
body positions and orientations do not evolve over time exactly as they should.

Joint error can also occur if the user sets the position/orientation of one body without correctly
setting the position/orientation of the other body.

The solution to this problem is to use a nonzeroc. The meanings ofc and the other terms in
the constraint equation 24 are illustrated in figure 3.J1v1 + Ω1ω1 is the velocity of the socket as
measured from body 1. Similarly,J2v2 + Ω2ω2 is the velocity of the ball as measured from body
2. Both of these velocities are in global coordinates.

If c is zero then both velocities must be equal. Ifc nonzero then they are not equal. If we
choosec to be proportional to the positional error vector between the ball and the socket:

c = ε
[
(p1 + a1)− (p2 + a2)

]
(41)

then the ball and socket velocities will be constrained so that they move closer to each other (if they
are already together thenc = 0). This means that any positional error introduced by the simulation
will be reduced over time.

The factorε controls how quickly this error reduction is performed.ε is computed from the
global “error reduction parameter” (ERP). The meaning of ERP is:

• If ERP = 0 then no error reduction is performed, andc = 0.

• If ERP = 1 thenc should be set so that the position error is completely eliminated in one
time step.

7

Figure 4: A contact joint.

• For 0 < ERP< 1, the position error should be reduced by a fraction ERP in one time step.

As c has the units of velocity, for a time steps:

c =
distance

time
(42)

=
ERP

[
(p1 +R1a

′
1)− (p2 +R2a

′
2)
]

s
(43)

so we can see that

ε =
ERP
s

(44)

It would seem that setting ERP= 1 is the best approach, since this eliminates all error in one time
step. However, setting ERP= 1 is not recommended as it will not have the intended effect due to
various internal approximations. A value of ERP= 0.1 to 0.8 is recommended in practice.

6 Example 2: A contact joint

Let us derive the constraint equation for the frictionless contact joint shown in Figure 4.

6.1 Step 1: Position invariant

We will skip this step and write the constraint directly in terms of velocity. This is sometimes the
easiest approach, as a constraint may have a complex position form but a simple velocity form.

8

6.2 Step 2: Velocity invariant

Definea1 (anda2) to be the offset vectors (in global coordinates) fromp1 (andp2) to the contact
point. The contact normal vector isn. The constraint must state that the velocity of the contact
point with respect to the two bodies must be the same along the direction of the normal:

nTv1 + nT ω̂1a1 = nTv2 + nT ω̂2a2 (45)

nTv1 − nT â1ω1 − nTv2 + nT â2ω2 = 0 (46)

Thusm = 1 and

J1 = nT (47)

Ω1 = −nT â1 (48)

J2 = −nT (49)

Ω2 = nT â2 (50)

6.3 Step 3: Choosè, h and CFM

The constraint forceλ will be oriented along the normaln. We want this force to push the bodies
apart, but not to suck them together. Without limits onλ this contact joint would be “sticky”, i.e.
it would not allow the contact to be broken. Thus we set

` = 0 (51)

h = ∞ (52)

so that

0 ≤ λ ≤ ∞ (53)

The CFM matrixC is actually a1 × 1 scalar in this case. Let us examine the effect of making
C nonzero. First note that the quantities in equation 46 are velocities along the contact normal
vector. By examining equation 24 we see that if the termCλ is nonzero it effectively adds toc.
The result is that the contact point velocity with respect to the two bodies will not be equal—in
other words, we will get some relative velocity at the contact point in the normal direction (the
bodies will interpenetrate).

If the bodies are being pressed together lightly, the constraint forceλwill be small. The product
Cλ will be small, and there will be a small interpenetration velocity.

If the bodies are being pressed together with great force, a large constraint forceλ will be nec-
essary to keep then apart. The productCλ will be large, and there will be a large interpenetration
velocity.

Thus we will be able to push the bodies in to each other at the contact, with a velocity that
depends on how hard we push (i.e. what force is used). This is somewhat similar to if the bodies
were made of clay or some other yielding substance. The magnitude of this effect is controlled by
the scale factorC. C can be chosen by the user to get various material effects.

9

6.4 Step 4: Error reduction

As noted above, the quantities in equation 46 are velocities along the contact normal vector. We
can choosec based on the position error along the normal vector, in a manner similar to the ball-
and-socket joint:

c =
ERP
s

nT
[
(p1 + a1)− (p2 + a2)

]
(54)

Setting ERP> 0 will tend to counter the effects of settingC is nonzero, as the error reduction
process is essentially a restoring velocity to counter theCλ interpenetration velocity.

By allowing the user to choose ERP and CFM independently for the contact constraint, various
interesting material effects can be produced—for example “softness” or “springiness”.

7 How to use ERP and CFM

The following is taken from the ODE manual:
ERP and CFM can be independently set in many ODE joints. They can be set in contact joints,

in joint limits and various other places, to control the sponginess and springiness of the joint (or
joint limit).

If CFM is set to zero, the constraint will be hard. If CFM is set to a positive value, it will be
possible to violate the constraint by “pushing on it” (for example, for contact constraints by forcing
the two contacting objects together). In other words the constraint will be soft, and the softness
will increase as CFM increases. What is actually happening here is that the constraint is allowed to
be violated by an amount proportional to CFM times the restoring force that is needed to enforce
the constraint. Note that setting CFM to a negative value can have undesirable bad effects, such as
instability. Don’t do it.

By adjusting the values of ERP and CFM, you can achieve various effects. For example you
can simulate springy constraints, where the two bodies oscillate as though connected by springs.
Or you can simulate more spongy constraints, without the oscillation. In fact, ERP and CFM can
be selected to have the same effect as any desired spring and damper constants. If you have a
spring constantkp and damping constantkd, then the corresponding ODE constants are:

ERP =
skp

skp + kd
(55)

CFM =
1

skp + kd
(56)

wheres is the step size. These values will give the same effect as a spring-and-damper system
simulated with implicit first order integration.

Increasing CFM, especially the global CFM, can reduce the numerical errors in the simulation.
If the system is near-singular, then this can markedly increase stability. In fact, if the system is
misbehaving, one of the first things to try is to increase the global CFM.

10

